Половые хромосомы и аутосомы.
Женская гетерогаметность имеет место у некоторых насекомых, например у бабочек. Среди позвоночных животных она характерна для птиц и пресмыкающихся.
Во всех рассмотренных выше примерах развиваются спермин двух категорий: либо с Х- и У-хромосомами (дрозофила, человек), либо половина спермиев несет Х-хромосому, а другая совсем лишена половой хромосомы. Яйцеклетки в отношении половых хромосом все одинаковы. Во всех этих случаях мы имеем мужскую гетерогаметность (разногаметность). Женский пол гомогаметен (равногаметен). Наряду с этим в природе встречается и другой тип определения пола, характеризующийся женской гетерогаметностью. Здесь имеют место отношения обратные только что рассмотренным. Разные половые хромосомы или только одна Х-хромосома свойственны женскому полу. Мужской пол обладает парой одинаковых Х-хромосом. Очевидно, в этих случаях будет иметь место женская гетерогаметность. После мейоза образуются яйцевые клетки двух сортов, тогда как в отношении хромосомного комплекса все спермин одинаковы (все несут одну Х-хромосому). Следовательно, пол зародыша будет определяться тем, какое яйцо с Х- или У-хромосомой будет оплодотворено.
У некоторых раздельнополых организмов (например, некоторых насекомых) У-хромосома вообще отсутствует. В этих случаях у самца оказывается на одну хромосому меньше: вместо Х- и У- у него имеется одна Х-хромосома. Тогда при образовании мужских гамет в процессе мейоза Х-хромосома не имеет партнера для конъюгации и отходит в одну из клеток. В результате половина всех сперматозоидов имеет Х-хромосому, а другая половина лишена ее. При оплодотворении яйца спермием с Х-хромосомой получается комплекс с двумя X-хромосомами, и из такого яйца развивается самка. Если яйцеклетка будет оплодотворена спермием без Х-хромосомы, то разовьется организм с одной Х-хромосомой (полученной через яйцеклетку от самки), который будет самцом.
Соответственно у мужчин образуются сперматозоиды двух сортов с Х- и У-хромосомами.
У человека хромосомный механизм определения пола тот же, что и у дрозофилы. Диплоидное число хромосом человека 46. В это число входят 22 пары аутосом и 2 половые хромосомы. У женщин это две Х-хромосомы, у мужчин одна Х- и одна У-хромосома.
При созревании половых клеток у самки каждая яйцеклетка в результате мейоза получает гаплоидный набор из четырех хромосом: три аутосомы и одну Х-хромосому. У самцов в равных количествах образуются сперматозоиды двух сортов. Одни несут три аутосомы и Х-хромосому, другие три аутосомы и У-хромосому. При оплодотворении возможны две комбинации. Яйцеклетка с равной вероятностью может быть оплодотворена спермием с Х- или У-хромосомой. В первом случае из оплодотворенного яйца разовьется самка, а во втором самец. Пол организма определяется в момент оплодотворения и зависит от хромосомного набора зиготы.
Каким образом рассмотренные половые различия в хромосомных наборах самцов и самок поддерживаются в процессе размножения? Для ответа на этот вопрос необходимо выяснить поведение хромосом в мейозе и при оплодотворении. Сущность этого процесса представлена на рисунке.
По трем парам хромосом самцы и самки не отличаются друг от друга. Но в отношении одной пары имеются существенные различия. У самки две одинаковые (парные) палочковидные хромосомы; у самца только одна такая хромосома, пару которой составляет особая, двуплечая хромосома. Те хромосомы, в отношении которых между самцами и самками нет различий, называют аутосомами. Хромосомы, по которым самцы и самки отличаются друг от друга, называют половыми. Таким образом, хромосомный набор дрозофилы слагается из шести аутосом и двух половых хромосом. Половую, палочковидную хромосому, присутствующую у самки в двойном числе, а у самца в единичном, называют X-хромосомой; вторую, половую (двуплечую хромосому самца, отсутствующую у самки) У-хромосомой.
Генетика пола. Хорошо известно, что у раздельнополых организмов (в том числе и у человека) соотношение полов обычно составляет 1:1. Какие причины определяют пол развивающегося организма? Вопрос этот издавна интересовал человечество ввиду его большого теоретического и практического значения. Хромосомный набор самцов и самок у большинства раздельнополых организмов неодинаков. Познакомимся с этими различиями на примере набора хромосом у дрозофилы.
Биологическое значение перекреста хромосом очень велико. Благодаря ему создаются новые наследственные комбинации генов, повышается наследственная изменчивость, которая поставляет материал для естественного отбора.
Ясно, что при этом гены, находившиеся первоначально в одной из двух гомологичных хромосом, окажутся в разных гомологичных хромосомах. Между ними произойдет перекомбинация. Частота перекреста для разных генов оказывается различной. Это зависит от расстояния между ними. Чем ближе в хромосоме расположены гены, тем реже они разделяются при перекресте. Это происходит потому, что хромосомы обмениваются различными участками, и близко расположенные гены имеют больше вероятности оказаться вместе. Исходя из этой закономерности удалось для хорошо изученных в генетическом отношении организмов построить генетические карты хромосом, на которых нанесено относительное расстояние между генами.
Почему же все-таки среди гибридов второго поколения появляется небольшое число особей с перекомбинацией родительских признаков? Почему сцепление генов не является абсолютным? Исследования показали, что эта перекомбинация генов обусловлена тем, что в процессе мейоза при конъюгации гомологичных хромосом они иногда обмениваются своими участками, или, иначе говоря, между ними происходит перекрест.
Их будет всего по 8,5 % каждого типа. На этом примере видно, что гены, обусловившие признаки серое тело нормальные крылья и темное тело зачаточные крылья, наследуются преимущественно вместе, или, иначе говоря, оказываются сцепленными между собой. Это сцепление является следствием локализации генов в одной и той же хромосоме. Поэтому при мейозе эти гены не расходятся, а наследуются вместе. Явление сцепления генов, локализованных в одной хромосоме, известно под названием закона Моргана.
На самом деле в опыте мух с исходной комбинацией признаков (серое тело нормальные крылья, темное тело зачаточные крылья) оказывается значительно больше (в данном опыте по 41,5 %), чем мух с перекомбинированными признаками (серое тело зачаточные крылья и темное тело нормальные крылья).
Опыты показали, что гены, локализованные в одной хромосоме, оказываются сцепленными, т. е. наследуются преимущественно вместе, не обнаруживая независимого распределения. Рассмотрим конкретный пример. Если скрестить дрозофилу с серым телом и нормальными крыльями с мушкой, обладающей темной окраской тела и зачаточными крыльями, то в первом поколении гибридов все мушки будут серыми, с нормальными крыльями. Это гетерозигота по двум парам аллелей (серое тело темное тело и нормальные крылья зачаточные крылья). Проведем скрещивание. Скрестим самок этих дигетерозиготных мух (серое тело и нормальные крылья) с самцами, обладающими рецессивными признаками темным телом и зачаточными крыльями. Исходя из второго закона Менделя, можно было бы ожидать получения в потомстве мух четырех фенотипов: 25 % серых, с нормальными крыльями; 25 % серых, с зачаточными крыльями; 25 % темных, с нормальными крыльями; 25 % темных, с зачаточными крыльями.
Это насекомое исключительно удобно для генетической работы. Мушка легко разводится в лабораторных условиях, плодовита, каждые 10 15 дней при оптимальной для нее температуре 25 26` С дает новое поколение, обладает многочисленными и разнообразными наследственными признаками, имеет небольшое число хромосом (в диплоидном наборе 8).
Закономерность наследования при нахождении генов в одной хромосоме была тщательно изучена Т. Морганом и его школой. Основным объектом исследований служила небольшая плодовая мушка дрозофила
Сцепленное наследование. Независимое распределение генов (второй закон Менделя) основано на том, что гены, относящиеся к разным аллелям, размещены в разных парах гомологичных хромосом. Естественно возникает вопрос: а как же будет происходить распределение разных (неаллельных) генов в ряду поколений, если они лежат в одной и той же паре хромосом? Такое явление должно иметь место, ибо число генов во много раз превосходит число хромосом. Очевидно, к генам, находящимся в одной хромосоме, закон независимого распределения (второй закон Менделя) не применим. Он ограничен лишь теми случаями, когда гены разных аллелей находятся в различных хромосомах.
Сцепление наследования генов
Комментариев нет:
Отправить комментарий